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Fig. 1. Process cross section.
Fig. 3. Transformer equivalent-circuit model (also inductor mod&Yifs set
to zero).

Ly and Ly, are the imaginary parts dfi1 andZ»., respectively, di-
vided byw.

An ideal transformer has no leakage inductance and, thus, from (1)
has a coupling coefficierit equal to one. In the transformer model, the
leakage inductancds, andL- causek to be less than one. Physically,
the leakage inductances are due to lines of magnetic flux that link one
winding, but not both.

lll. FABRICATION TECHNOLOGY

The fabrication cross section is shown in Fig. 1. The LM and TM
layers consist of 2.7:m of sputtered Al-Cu. The TM layer is sepa-
rated from the substrate by approximately® of SiO,. The dielec-
tric is a DuPont type 5811 [6] polyimide, spun-on, and then cured to a
final thickness of approximately 32m. Via holes are created and the
resulting sidewall angle allows for excellent step coverage. This struc-
ture is similar to previously reported multichip-module (MCM) fabri-
|:| Top Metal Layer cation results on transmission-line structures [7], but here, the lines are
|:| Last Metal Layer fabricated directly on a silicon substrate. The conductivity of the metal

is approximately 2.8% 10" S/m. The process has been implemented
® Vi on an IBM 200-mm silicon VLSI fabrication line as part of the Si/SiGe
heterojunction-bipolar-transistor (HBT) BiCMOS technology [8].

via to ground

Fig. 2. Schematic top view of lateral transformer.
IV. EXPERIMENTAL RESULTS

The lateral transformers presentet_j here _have been implenf'er]&eq\/licrostrip Transmission Lines
using two metal layers in a lateral spiral design, as shown in Fig. 2. . . . .
The lateral transformers were constructed so that their windings makd/icrostrip test structures have been fabricated with various lengths,
a “flattened” coil. If one were to travel along the path of the windinﬁ‘”d widths of 15, 27, and 38;6n. The effective dielectric constant for

from ports 1 or 2 to ground, one would see coil segments on alternatfich ransmission-line width was extracted with a typical value of 2.8.
LM and TM layers. Fig. 4 shows the transmission-line loss in decibels per millimeter for

In standard planar spiral inductors and transformers, the majority‘?ﬁCh width. Also shown is the calculated loss as a function of frequency

the magnetic field is perpendicular to the substrate, causing eddy d@f-the 15xm line using standard design equations that can be found

rents and ultimately loss in the substrate. Lateral devices have a mi&gi°]- A Polyimide loss tangent of 0.01 produced the best agreement

netic field that is primarily parallel to the substrate, which should reslfWeen the measured data and predicted loss. The quality factor
cted for each set of transmission lines is shown in Fig. 5 and is

in reduced substrate loss. On the other hand, the lateral devices

overlapping winding segments that are expected to lower the resorifulated as
frequencies compared to the standard planar devices. Lateral windings 0= I6; 3
also contain many vias, increasing the series resistance. A circuit model ~ a0y )

of the transformers can be seen in Fig. 3 [13]. In this ma#ilis the wherea is the real part of the extracted propagation constantand
mutual inductance, anfl; and L., are the leakage inductances and do or P propag

not contribute to the coupling between ports 1 and 2. Capaditors IS the imaginary part.

andC3 model the c_apacnt_anpe betwegn the Wlndlng_s and the SUbStréFeSquare Planar Inductors

andC’; models the interwinding capacitance. Assuming capacitprs o -

C,, andC;5 are small, the mutual inductandé can be expressed as Planar spiral inductors on silicon substrates have been developed by
the imaginary part of,, divided by the angular frequency. The cou- several authors [9]-[11]. In our study, the square planar inductors were

pling coefficient is then defined as constructed on the LM layer. Each set consisted of a series of six in-
M ductors with an increasing number of turns.
k= \/ﬁ (1) After dembedding, the inductance afdccan be calculated from the
where - two-port admittance parameters

1 1
Li=L+M 2 L= ;Im {ﬁ} @
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Fig. 4. Measured microstrip losses for various widths compared to calculate
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An equivalent circuit of the inductors is shown in Fig. 3 with =

0. The peaking seen in the inductance plots is due to self-resonance.
Fig. 6, the inductance ar@ of the inductors, shows a pegkof 22 at
about 10 GHz.

Q:

Q)

C. Lateral Transformers

Transformers with 10, 15, and 18 turns were fabricated, each with
signal conductor widths of 4pm and winding segment lengths of
700 pem.

The loss here is greater than that presented in [3], but they have a
wider bandwidth. Fig. 7 shows the maximum available gain of each
transformer. It can be expressed as [14]

1 > 1—|Tour)?
G'mu = |SZl |2 | out | 92
1- 522F6UT

6
1—|Tmn|? ©

The calculated parametét,,.. reflects the gain of the system when
the source and load reflection coefficiefits andI';, are conjugately
matched to the input and output reflection coefficients of the trans-
former, i.e.,I''v andTour, respectively. Thus, the maximum avail-
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able gain occurs in (6) whehis = I'ty andl', = I'gyt. The best

gain achieved is-2.5 dB at 3 GHz with the 15-turn transformer. The |1
useful bandwidth of the transformers can be seen from the coupling
coefficients plotted in Fig. 8. The 18-turn transformer has the highest[2]
coupling coefficient (0.6), but only has usable bandwidth from 1 to
5.5 GHz. The 15-turn transformer has a lower coupling coefficient
(0.5), but has a larger bandwidth from 1 to 9 GHz. The ten-turn trans-[3)
former has the lowest coupling coefficient (0.4), but the largest band-
width from 1 to 12.5 GHz. At frequencies higher than 5.5 GHz for the
18-turn transformer, 9 GHz for the 15-turn transformer, and 12.5 GHz[4]
for the ten-turn transformer, the interwinding capacitaficedomi-
natesS»; . Above these frequencies, the structures no longer behave agp)

transformers, but as a capacitive couplers.
(6]
(7]
V. CONCLUSIONS

Transformers, transmission lines, and inductors have been demoni8!
strated in a production silicon VLSI HBT technology. Ten-, 15-,
and 18-turn transformers have been built in a lateral orientation with[g;
wide-band performance. These devices offer improved performance
from 5 to 20 GHz for silicon monolithic-microwave integrated-circuit
(MMIC) applications.
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