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Microwave Transformers, Inductors, and Transmission
Lines Implemented in an Si/SiGe HBT Process

David C. Laney, Lawrence E. Larson, Paul Chan, John Malinowski,
David Harame, Seshu Subbanna, Rich Volant, and Michael Case

Abstract—Experimental results are presented on microwave inductors,
transformers, and transmission lines fabricated in an Si/SiGe heterojunc-
tion-bipolar-transistor process with standard metallization and a thick
polyimide dielectric. Microstrip transmission lines with characteristic
impedances from 44 to 73
, ’s from 10 to 14, and insertion losses
from 0.11 to 0.16 dB/mm at 10 GHz are presented. Conventional planar
inductors with inductances from 0.5 to 15 nH and with peak ’s up to
22 are presented. Lateral transformers with a maximum available gain
of better than 5 dB and a measured coupling coefficient( ) of 0.6 at
5.5 GHz and 0.4 up to 12.5 GHz are also discussed.

Index Terms—Inductors, integrated circuit fabrication, MMICs, trans-
formers, transmission lines.

I. INTRODUCTION

In this paper, we present the performance of microstrip transmis-
sion lines, standard square planar inductors, and bilayer planar trans-
formers produced with standard silicon very large scale integration
(VLSI) Al–Cu metallization and a thick polyimide dielectric. In this
process, the top metal (TM) layer is the standard back-end metalliza-
tion, and the metal layer above the top layer, the last metal (LM) layer,
is separated from the TM layer by 12�m of polyimide (Fig. 1).

II. SILICON-BASED TRANSMISSION-LINE, INDUCTOR, AND

TRANSFORMERDESIGN

The design of microstrip structures, inductors, and transformers
is well known in planar microwave-circuit technology. References
[1]–[5], [7], and [9]–[12] provide important background.
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Fig. 1. Process cross section.

Fig. 2. Schematic top view of lateral transformer.

The lateral transformers presented here have been implemented
using two metal layers in a lateral spiral design, as shown in Fig. 2.
The lateral transformers were constructed so that their windings make
a “flattened” coil. If one were to travel along the path of the winding
from ports 1 or 2 to ground, one would see coil segments on alternating
LM and TM layers.

In standard planar spiral inductors and transformers, the majority of
the magnetic field is perpendicular to the substrate, causing eddy cur-
rents and ultimately loss in the substrate. Lateral devices have a mag-
netic field that is primarily parallel to the substrate, which should result
in reduced substrate loss. On the other hand, the lateral devices have
overlapping winding segments that are expected to lower the resonant
frequencies compared to the standard planar devices. Lateral windings
also contain many vias, increasing the series resistance. A circuit model
of the transformers can be seen in Fig. 3 [13]. In this model,M is the
mutual inductance, andL1 andL2 are the leakage inductances and do
not contribute to the coupling between ports 1 and 2. CapacitorsC1

andC3 model the capacitance between the windings and the substrate
andC2 models the interwinding capacitance. Assuming capacitorsC1,
C2, andC3 are small, the mutual inductanceM can be expressed as
the imaginary part ofZ21 divided by the angular frequency!. The cou-
pling coefficient is then defined as

k =
Mp
L11L22

(1)

where

Lii = Li +M (2)

Fig. 3. Transformer equivalent-circuit model (also inductor model ifM is set
to zero).

L11 andL22 are the imaginary parts ofZ11 andZ22, respectively, di-
vided by!.

An ideal transformer has no leakage inductance and, thus, from (1)
has a coupling coefficientk equal to one. In the transformer model, the
leakage inductancesL1 andL2 causek to be less than one. Physically,
the leakage inductances are due to lines of magnetic flux that link one
winding, but not both.

III. FABRICATION TECHNOLOGY

The fabrication cross section is shown in Fig. 1. The LM and TM
layers consist of 2.7�m of sputtered Al–Cu. The TM layer is sepa-
rated from the substrate by approximately 3�m of SiO2. The dielec-
tric is a DuPont type 5811 [6] polyimide, spun-on, and then cured to a
final thickness of approximately 12�m. Via holes are created and the
resulting sidewall angle allows for excellent step coverage. This struc-
ture is similar to previously reported multichip-module (MCM) fabri-
cation results on transmission-line structures [7], but here, the lines are
fabricated directly on a silicon substrate. The conductivity of the metal
is approximately 2.89� 107 S/m. The process has been implemented
on an IBM 200-mm silicon VLSI fabrication line as part of the Si/SiGe
heterojunction-bipolar-transistor (HBT) BiCMOS technology [8].

IV. EXPERIMENTAL RESULTS

A. Microstrip Transmission Lines

Microstrip test structures have been fabricated with various lengths,
and widths of 15, 27, and 38.5�m. The effective dielectric constant for
each transmission-line width was extracted with a typical value of 2.8.
Fig. 4 shows the transmission-line loss in decibels per millimeter for
each width. Also shown is the calculated loss as a function of frequency
for the 15-�m line using standard design equations that can be found
in [5]. A polyimide loss tangent of 0.01 produced the best agreement
between the measured data and predicted loss. The quality factorQ

extracted for each set of transmission lines is shown in Fig. 5 and is
calculated as

Q =
�

2�T
(3)

where�T is the real part of the extracted propagation constant and�

is the imaginary part.

B. Square Planar Inductors

Planar spiral inductors on silicon substrates have been developed by
several authors [9]–[11]. In our study, the square planar inductors were
constructed on the LM layer. Each set consisted of a series of six in-
ductors with an increasing number of turns.

After dembedding, the inductance andQ can be calculated from the
two-port admittance parameters

L =
1

!
Im

1

Y11
(4)
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Fig. 4. Measured microstrip losses for various widths compared to calculated
loss for 15-�m line.

Fig. 5. Transmission-line quality factor for various widths.

(a)

(b)

Fig. 6. Square spiral inductor. (a) Inductance. (b) Quality factor.

Fig. 7. Lateral transformer maximum available gain.

Fig. 8. Lateral transformer coupling coefficient (k).

and

Q =

Im
1

Y11

Re
1

Y11

=
�ImfY11g

RefY11g
: (5)

An equivalent circuit of the inductors is shown in Fig. 3 withM =

0. The peaking seen in the inductance plots is due to self-resonance.
Fig. 6, the inductance andQ of the inductors, shows a peakQ of 22 at
about 10 GHz.

C. Lateral Transformers

Transformers with 10, 15, and 18 turns were fabricated, each with
signal conductor widths of 45�m and winding segment lengths of
700�m.

The loss here is greater than that presented in [3], but they have a
wider bandwidth. Fig. 7 shows the maximum available gain of each
transformer. It can be expressed as [14]

Gma =
1

1� j�INj2
jS21j

2 1� j�OUTj
2

1� S22��OUT

2
: (6)

The calculated parameterGma reflects the gain of the system when
the source and load reflection coefficients�S and�L are conjugately
matched to the input and output reflection coefficients of the trans-
former, i.e.,�IN and�OUT, respectively. Thus, the maximum avail-
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able gain occurs in (6) when�S = �
�

IN and�L = �
�

OUT. The best
gain achieved is�2.5 dB at 3 GHz with the 15-turn transformer. The
useful bandwidth of the transformers can be seen from the coupling
coefficients plotted in Fig. 8. The 18-turn transformer has the highest
coupling coefficient (0.6), but only has usable bandwidth from 1 to
5.5 GHz. The 15-turn transformer has a lower coupling coefficient
(0.5), but has a larger bandwidth from 1 to 9 GHz. The ten-turn trans-
former has the lowest coupling coefficient (0.4), but the largest band-
width from 1 to 12.5 GHz. At frequencies higher than 5.5 GHz for the
18-turn transformer, 9 GHz for the 15-turn transformer, and 12.5 GHz
for the ten-turn transformer, the interwinding capacitanceC2 domi-
natesS21. Above these frequencies, the structures no longer behave as
transformers, but as a capacitive couplers.

V. CONCLUSIONS

Transformers, transmission lines, and inductors have been demon-
strated in a production silicon VLSI HBT technology. Ten-, 15-,
and 18-turn transformers have been built in a lateral orientation with
wide-band performance. These devices offer improved performance
from 5 to 20 GHz for silicon monolithic-microwave integrated-circuit
(MMIC) applications.
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